
The Influence of the Orthogonality of Feature Functions
on Artificial Neural Networks

Lukas Florian Münzel

Under the direction of

Prof. Lizhong Zheng
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Dr. Erixhen Sula
Postdoctoral researcher

Massachusetts Institute of Technology

Research Science Institute
August 2, 2021

Abstract

Conventional methods for adjusting the weights of artificial neural networks only con-
sider the output layer when calculating the loss. Our method also takes into account infor-
mation from the functions generating the outputs of the neurons in the second to last layer,
which are called feature functions. Specifically, we measure how orthogonal the feature func-
tions are using a covariance measure. We incorporate a term in the loss to explicitly reward
orthogonal feature functions. We were then able to generate nearly orthogonal feature func-
tions without compromising on accuracy. Due to the convenient mathematical properties of
orthogonal feature functions, we will in a future next step be able to find the optimal choice
of weights between the second to last and the output layer with low computational cost.

Summary

Artificial neural networks try to infer features from inputs, analogous to how neurons in the
human brain conclude that a dog is being seen from the light reflected by that dog hitting the
eyes. Conventional methods for improving the performance of these artificial neural networks
only consider the final output of the network and then adjust the entire network to improve
that final output. In order to improve, our method also analyses an intermediate layer of the
neural network. Specifically, we measure the orthogonality of the functions of the neurons
in the second-to-last last layer, which gives us information about the independence of these
functions. We were then able to increase the orthogonality significantly without impacting
the performance of the neural network. Due to some convenient mathematical properties,
this will make parts of the adjustment of the neural network to maximize its performance
fast and remarkably accurate.

1 Introduction

The concepts of artificial intelligence and machine learning have fascinated the scientific

community and authors alike since as early as the 1950s [1]. With exponentially growing

computational resources, these early dreams started to become feasible in the 1980s and

especially in the 21st century. Now, state of the art methods can be used from recommending

YouTube videos to detecting breast cancer [2, 3].

Deep learning has proven itself to be one of the most fruitful techniques in the field

of machine learning. Inspired by the way the neurons in our brain interact, deep learning

models are comprised of multiple layers of simulated artificial neurons. The neurons in the

first layer directly take some input, say a picture, weigh it and pass it on to the next layer.

The neurons in that layer can, for example, learn how to detect edges. The neurons in the

following layer can then recognize more complex shapes like circles based on a combination

of the outputs of the neurons recognizing edges. This process is repeated until the last layer

is reached, where a neuron could predict the probability of the given picture being a dog.

To evaluate the performance of the neural network, the loss is calculated. The loss

measures how far the output of that last layer is from the intended output. The network is

then adjusted to minimize that loss, and the process is repeated.

Our approach, however, can also take information from the second-to-last layer into

account. We call the functions generating the output of these neurons in the second-to-last

layer feature functions. Specifically, we add a measure of the redundancy of information

between the feature functions to the loss. This rewards the neural network for making the

feature functions independent, for making them orthogonal. If the feature functions were

orthogonal, the optimal choice of weights could be computed easily due to some convenient

mathematical properties discussed in subsection 2 of section 2. How close to being orthogonal

two feature functions are orthogonal is measured using the covariance. Calculating this

1

covariance for training neural networks is not an entirely new idea, but it was dismissed

by Yann LeCun et al. due to its high computational cost.

Understanding and influencing the effect the covariance between the feature functions

has on the training process and using its mathematical properties could help make that

training process faster and its results more accurate. Thus we have decided to investigate

the influence of this until now largely dismissed method.

Content

In section 2, we discuss the basic function of artificial neural networks and the mathe-

matical background required to understand the relevance of the orthogonality of the feature

functions. Section 3 discusses the used data and methods to obtain orthogonality. The draw-

backs of orthogonalizing the feature functions and the causes of changes in covariance in

regular training processes are discussed in section 4. How future work can build upon our

results can be read in section 5. To conclude, section 6 summarizes our results and our

gratitude goes to those mentioned in section 7, who made this research possible.

2

2 Preliminaries

How neural networks work

x1

x2

x3

f1

f2

f3

f4

· · ·

y1

y2

y3

g1(2)

g4(2)

Figure 1: Artificial neural network with feature functions and weights

Figure 1 demonstrates the basic structure of an artificial neural network. The ver-

tical stacks of neurons are called layers, f1, f2, f3 · · · fk are called feature functions and

g1(y), g2(y) · · · gk(y) are called weights. The weight gi(j) connects the ith feature function

with the jth output neuron. Using these weights and the ones in the layers before, the neural

network calculates outputs y1, y2 · · · ym based on the inputs x1, x2, · · ·xn.

The value of say y2 is given by the sum of all feature functions scaled by the respective

weights, meaning that y2 =
∑k

i=1 gi(2)fi(x1, x2, · · ·). To convert it into a probability, y2 is

then normalized. Other layers use different normalizations for different purposes. But not

only are all other outputs yi calculated similarly using different weights, but the feature

functions themselves are also calculated in the same way as y2, namely using a weighted sum

of the outputs of neurons in the layer before. This process of taking a weighted sum of the

outputs of the layer before is repeated until the input layer is reached.

The neural network then calculates its predictions for thousands of samples, and the loss

is calculated, which measures how different the predictions are from their intended values.

3

Stochastic gradient descent or more sophisticated methods based on similar ideas iteratively

calculate how to adjust the weights to minimize the loss [4].

Interpreting functions as vectors

Given some function f(x), there exists a corresponding vector with the function’s values

at different points as its components.

~f =

f(x = 1)

f(x = 2)

f(x = 3)

...

Instead of only considering natural numbers, this vector could also have the function values at

every real point as its components. For these kinds of vectors, there exists a mathematically

rigorous way of defining vector operations analogue to these of Euclidean space, such as

vector addition or the dot product.

For example, consider functions f(x) and g(x), defined for 0 ≤ x ≤ 1.

We can define f(x) · g(x) as∫ 1

0

f(x)g(x)dx = lim
n→∞

1

n

n∑
i=1

f

(
i

n

)
g

(
i

n

)
For the corresponding vectors in Euclidean space with a finite number of components and

sampling uniformly from the functions, this corresponds to

1

n
~f · ~g

This means that the dot product of two functions is in the limit equal to the dot product of

two Euclidean vectors with the values of these functions as components, normalized by 1
n
.

Applying the insights gained from Euclidean space to this kind of vector space proves itself

useful, as discussed in the following subsection.

4

Projection onto the target function

Let the target function T (x1, x2 · · ·xn) be defined as the function mapping an input

x1, x2 · · · xn to the respective desired value of yi for some specific i. Our goal thus is to make

neural network’s output yi as a function of inputs x1, x2 · · ·xn match the target function by

adjusting the weights g1(i), g2(i) · · · gk(i). The feature functions and the target function can

now be interpreted as vectors, as described in subsection 2. Therefore, minimizing the loss

corresponds to the minimizing the squared Euclidean distance between the target function

and the sum of the feature functions scaled by the weights. The loss therefore is

||~T −
∑
i

gi~fi||2

The set of all vectors which can be expressed as
∑

i gi
~fi is called the span of the feature

functions. Thus, the problem is to find the vector in the span of the feature functions with

the minimal squared Euclidean distance to the target function. This can be interpreted

geometrically as projecting the target function onto the span of the feature functions.

~T
~f1

~f2

Figure 2: Projection of ~T on the span of ~f1 and ~f2

In Figure 2, the red point represents the projection of ~T onto the span of the two feature

functions ~f1 and ~f2. The plane represents the span of ~f1 and ~f2.

Calculating the projection of ~T onto the span of ~f1 and ~f2 would be easy if that projection

could be found by simply summing the projections of ~T onto the individual feature functions.

5

If all the feature functions are orthogonal to each other, the projection can indeed be found

in this manner. Two feature functions are orthogonal if their inner product 〈~f1, ~f2〉 is zero. In

R2, this would mean that they have a right angle between them and that their dot product

is zero. The additivity of the projection for orthogonal feature functions is shown in Figure

3.

The projection can, however, not be reduced to projecting onto the individual feature

functions if the feature functions are not orthogonal, as visualized in Figure 4. Conventional

methods for minimizing the loss avoid this problem by computing the solution iteratively.

The size of the steps in these iterations is called learning rate. Having easily computed the

projection onto the orthogonal feature functions, however, we find the choice of weights

g1(i), g2(i) · · · gk(i) that results in the smallest possible loss without any iterative processes.

~f1

~f2

~f1

~f2

Figure 3: Additivity of projection onto orthogonal feature functions

6

~f1

~f2

~f1

~f2

Figure 4: Non-additivity of projection onto non-orthogonal feature functions

3 Methods

Data generation

The data set used consists of points in clusters of multivariate Gaussian distributions.

Each cluster has some class associated with it, which the neural network is supposed to

predict. Using such a data set has the advantage of reducing training times while still being

representative of many more complex data sets. Furthermore, it enabled us to modify the

complexity of the input the neural network has to predict the classes of. In Figure 5, the

class corresponds to the color of a point, and the background color represents the class the

neural network predicted.

7

Figure 5: Example of the generated input data with four classes, two dimensions and five

clusters per class. The color of the background represents the class the neural network pre-

dicted.

Measuring orthogonality

Making the feature functions orthogonal would greatly simplify finding the optimal

choice of weights. Since making the feature functions orthogonal is rather hard, a measure

of how close to orthogonal the feature functions are is needed. Say the dot product for fi

and fj is computed as described in subsection 2 of section 2, given by the following, where

xs is the sth randomly sampled input

1

nsamples

n∑
s=1

fi(xs) · fj(xs)

The calculation of the value that will be used for all further analysis of orthogonality is

called covariance and it is calculated by normalizing the above dot product by subtracting

the respective expected values from the feature functions before multiplying them. Thus, the

covariance between feature functions fi and fj is given by

ki,j =
1

nsamples

n∑
s=1

[fi(xs)− E(fi)] · [fj(xs)− E(fj)]

8

For every pair of two different vectors to be orthogonal means that ki,j is zero for i 6= j. To

measure the degree to which this is the case, the following is computed∑
i k

2
i,i∑

i,j k
2
i,j

Thus, this measure of covariance is the ratio between the total covariance of pairs of the same

feature functions and the total covariance of all pairs of feature functions. The covariance

measure ranges from zero to one, where a value of one implies that all pairs of two different

feature functions are orthogonal.

The main drawback of this method is that it uses O(k2) operations per sample, where

k is the number of feature functions. That is the case since there are k2 pairs of feature

functions, and for every one of these pairs, the sum over all samples is calculated.

Measuring the orthogonality in regular training processes

To investigate what causes the orthogonality measure to increase or decrease and why the

covariance was measured at the end of regular training processes. To achieve this, hundreds

of neural networks were trained with different parameters, such as the number of feature

functions. Since the influence of the change of a single parameter on the covariance measure

was to be investigated, the neural networks were constructed to only differ from some base

case in a single parameter. Because the data was artificially generated, parameters in the

input data, namely the number of dimensions, the number of classes and the number of

clusters per class, could be adjusted as well.

Subtracting the covariance measure from the loss

Since how close the feature functions are to being orthogonal can now be measured, and

since gradient descent minimizes the loss function, the covariance measure can simply be

subtracted from the loss. This rewards the neural network for making the feature functions

9

orthogonal without further effort.

How well the neural networks performs in terms of the covariance measure and the accu-

racy was then measured for different learning rates and for different levels of the importance

of minimizing the regular loss over maximizing the covariance measure. To quantify these

levels of importance, we introduce the covariance measure weight w, 0 ≤ w ≤ 1.

The loss is then given by

L = (1− w)Lregular − w

∑
i k

2
i,i∑

i,j k
2
i,j

4 Results and discussion

Covariance measure and accuracy in regular training

Figure 6: Orthogonality measure for different

numbers of feature functions

Figure 7: Accuracy for different numbers of

feature functions

10

Figure 8: Orthogonality measure for different

numbers of dimensions

Figure 9: Accuracy for different numbers of

dimensions

Figure 10: Orthogonality measure for differ-

ent numbers of classes

Figure 11: Accuracy for different numbers of

classes

11

Figure 12: Orthogonality measure for differ-

ent numbers of clusters

Figure 13: Accuracy for different numbers of

clusters

The figures 6, 8, 10 and 12 show a clear trend of the covariance measure correlating

with the complexity of the problem given to the neural network. The claim that these

effects are indeed the results of a higher problem complexity is supported by figures 7,

11 and 13, because the accuracy is generally expected to correlate with problem difficulty,

and the accuracy seems to be inversely correlated with the covariance measure. Our current

hypothesis for this behaviour is that as the pressure imposed in the neural network increases,

stochastic gradient descent is more and more forced to avoid redundant information, making

the feature functions closer to being orthogonal.

Subtracting the covariance measure from the loss

When subtracting the covariance measure from the loss, the covariance measure is ex-

pected to increase since stochastic gradient descent is trying to modify the weights such

that the loss is minimized. Figure 15 shows that this is indeed the case. For the figure, a

learning rate of 0.05 was used together with a covariance measure weight of 10%. This choice

of weight resulted in a covariance measure of more than 99%.

12

Figure 14: Accuracy over the training pro-

cess with a learning rate of 0.05

Figure 15: Covariance measure over the

training process with a learning rate of 0.05

However, increasing the covariance measure did come at a cost, since the accuracy

decreased when including the measure in the calculation of the loss, as shown in Figure

14. The shown intervals in all figures of this section are 95% confidence intervals, and the

result are thus statistically significant. Our explanation for the observed behaviour is that

stochastic gradient descent has to compromise between choosing the feature functions to

be orthogonal and choosing feature functions with which it can minimize the regular loss.

However, using the mathematical tools discussed in section 2, we could easily find the optimal

choice of weights between the last and the second-to-last layer. This would potentially enable

us to close the gap between the accuracies with low computational cost.

13

Figure 16: Accuracy over the training pro-

cess with a learning rate of 0.1

Figure 17: Covariance measure over the

training process with a learning rate of 0.1

As shown in Figure 16, this gap can also be closed by an appropriate choice of the

covariance measure weight. A value of 5% yields a covariance measure of more than 99%

while maintaining close to the same accuracy as the base case with a covariance measure

weight of zero. Note that since we could again easily find the optimal solution for the weights

between the orthogonal feature functions and the last layer, it would be very well possible

that we would be able to reach higher accuracies than with conventional methods.

14

Figure 18: Accuracy over the training pro-

cess with a learning rate of 0.01

Figure 19: Covariance measure over the

training process with a learning rate of 0.01

5 Future Work

A first step in verifying the importance and the validity of our analysis would be to

repeat the same methodology for more complex input data sets like, for example MNIST [5],

which is used to train handwritten digit recognition.

Then the projection of the target function onto the span of the feature functions can

be computed. Investigating the performance of this for the given feature functions optimal

method in terms of accuracy and training speed compared to conventional methods could

yield highly promising results. An observation requiring further analysis is that even though

the covariance measure increases with the complexity of the given input, it is decreasing

throughout the entire training process if the neural network is not rewarded for increasing

it. Explaining this behaviour could lead to insights useful for the future development of this

method.

15

6 Conclusion

In addition to considering the output layer when calculating the loss, our method also

takes into account information from feature functions. Specifically, we measure the orthogo-

nality of the feature functions using the covariance. We first showed that these feature func-

tions are closer to being orthogonal for more demanding tasks, indicating that conventional

methods for maximizing the accuracy already naturally orthogonalize the feature functions

to some degree. Using the loss to explicitly reward the neural network for orthogonalizing the

feature functions, we were then able to generate nearly orthogonal feature functions without

significantly decreasing accuracy. Furthermore, due to the convenient mathematical prop-

erties of orthogonal feature functions, we would in a next step be able to find the optimal

choice of weights between the second-to-last and the output layer with low computational

cost. Iterations of our work could thus cut down on computational cost and on the other

hand potentially increase accuracy, which could potentially save resources and lives.

7 Acknowledgments

First and foremost, I would like to thank my mentors, Professor Lizhong Zheng and

Dr. Erixhen Sula. My gratitude also goes to my tutor, Peter Gaydarov and my teaching

assistants Lucy Cai, Ishan Khare, Kenneth Choi and Dimitar Chakrov. The Massachusetts

Institute of Technology and the Center of Excellence in Education have made this program

possible, so I would like to express my gratefulness towards them as well. Furthermore, I

thank my fellow Rickoids of the year 2021. I would also like to thank the FBK Bern, the René

& Susanne Braginsky Stiftung and the Fritz-Gerber-Stiftung for organizing and financing my

participation at the Research Science Institute 2021. Finally, I am grateful as well for the

support both my parents have given me throughout this program.

16

References

[1] A. M. Turing. Computing machinery and intelligence. Mind, 59(October), 1950.

[2] I. Sechopoulos, J. Teuwen, and R. Mann. Artificial intelligence for breast cancer detection
in mammography and digital breast tomosynthesis: State of the art. Seminars in Cancer
Biology, 72:214–225, 2021. Precision Medicine in Breast Cancer.

[3] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommenda-
tions. In Proceedings of the 10th ACM Conference on Recommender Systems, New York,
NY, USA, 2016.

[4] S. Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[5] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[6] I. Csiszár and P. C. Shields. Information theory and statistics: A tutorial. Commun. Inf.
Theory, 1(4):417–528, Dec. 2004.

17

	Introduction
	Content

	Preliminaries
	How neural networks work
	Interpreting functions as vectors
	Projection onto the target function

	Methods
	 Data generation
	Measuring orthogonality
	Measuring the orthogonality in regular training processes
	Subtracting the covariance measure from the loss

	Results and discussion
	Covariance measure and accuracy in regular training
	Subtracting the covariance measure from the loss

	Future Work
	Conclusion
	Acknowledgments

