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Abstract

Quadrupedal robots offer great versatility since they can reach more places than wheeled
vehicles and can carry more than flying drones. This versatility gives quadrupedal robots the
potential to become very important in the future. This combination of traits could be useful,
especially in space exploration. Due to the more complex nature of walking compared to
rolling, gravity could interfere with their performance in environments with different gravity.
If we would want to send quadrupedal robots into space, we need to know how they react
to the different gravity of outer space. In this paper we trained a quadrupedal robot using
reinforcement learning in a simulated environment and then tested its different gaits over
various gravities. We show how adjusted gravity changes the gait significantly, at least in
simulated environments.

Summary

Walking robots have many advantages over their rolling or flying counterparts. They can
reach more places than rolling robots and carry more than flying ones. This combination
of abilities could make them very useful to send to space and use as rovers on different
planets or other celestial bodies. The walking robot could reach more extreme places there
than the wheeled rovers that already exist. The problem with walking robots is how complex
walking is. Even just the difference in gravity from earth to mars could significantly disturb
the motion of walking. Therefore, in this paper we look at a four-legged robot that, after
learning to walk, is tested in different gravities to evaluate the effect of gravity on its ability
to walk.



1 Introduction

Less than half of the landmass on earth is accessible to existing wheeled vehicles; however,

humans and animals can reach nearly all places[1]. Therefore, it seems advantageous to build

robots that have the same ability to traverse uneven terrain.

Due to their versatility and ability to reach remote places, four-legged robots are a topic

of increasing importance in a vast array of different human activities. Quadrupedal robots

or any walking robots could have the ability to reach most places we humans can access

too, while wheeled vehicles struggle even with for us humans easy to climb stairs. Legged

robots couple this ability to reach difficult to access locations with a higher carrying capacity

when compared to flying drones, who share the walking robots ability to reach most places

and even outstrip it in that regard. Due to these advantages over flying and rolling robots,

walking robots could also play a major role in space travel. Quadrupedal robots are only

starting to realize their potential right now. In the last couple of years we have seen four

legged robots like ANYmal[2] or Boston Dynamics’ Spot being developed for inspection or

maintenance tasks in industrial environments.

Quadrupedal robots tend to have one big disadvantage; at least with conventional ap-

proaches, producing a stable gait requires a lot of expertise and manual tuning, since for

every position of the robot a sequence of movements would have to be defined or at least

have a rigid system of defined rules to determine the next action. This is further complicated

when dynamic walking is desired, dynamic walking leaves the walking system without con-

stant balance. The robot falls from stable positions to stable position, very much like we do

when walking and letting our bodyweight fall on the foot in front of us. This is in contrast

to static walking where the walking system always remains in balance and could stop at any

point during a step and maintain the current positions. An alternative approach to these

conventional methods involves machine learning and in particular reinforcement learning.
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In this paper we propose using reinforcement learning to train a quadrupedal robot to

walk dynamically in a simulated environment with earth-like gravity. The robot’s gait, or

walking style, is then compared over varying gravity. The effects of gravity on the gaits of

dynamically walking robots could play an important role in sending them to space as these

effects are difficult to study in a real world environment here on earth.

2 Reinforcement Learning

Reinforcement learning, in the context of machine learning, is in short how an agent can

learn by trial and error, the agent being any system performing actions on its environment

that change the state of said environment. Reinforcement learning uses a system of reward

and punishment to help the agent learn. We reward any behaviors that lead to a desirable

new state of the environment while punishing anything that leads to a non-desirable state of

the environment. What such a desirable state of the environment looks like is determined by

the so-called reward function, which by looking at certain observations from its environment

determines how “good” a state is. An algorithm playing chess for example will be rewarded

for winning a game and punished for losing one. Another important keyword in reinforcement

learning is observations. Observations are the information about the environment that the

agent uses to decide about its actions. With us humans, for example, this would be all our

sensory information. Most of the time the observations don’t contain all the information

about the environment, we humans for example can’t see higher or lower frequencies in

the electromagnetic spectrum. We only have to observe the information important for the

decisions process of what action we take next. In reinforcement learning, the goal is finding

a an ideal policy. A policy is the set of rules or guidelines that determine the next action

from the observations. This policy can be either deterministic or stochastic. An ideal policy

then, is the policy that gives us the most expected reward over time. Reinforcement learning
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is a type of unsupervised machine learning. This means we don’t have to give the system

labelled training data but it can generate and even assign the data a value or “goodness”

with help of the reward function.

In the context of this paper, reinforcement learning has several advantages over conven-

tional approaches. Reinforcement learning allows for minimal manual tuning and does not

require you to have a precise understanding of what exact movements of the joints comprise

walking. These two characteristics make reinforcement learning more attractive compared to

conventional programming techniques.

There are many ways to implement the principles of reinforcement learning into an actual

program. In this paper we used an algorithm called soft actor-critic[3]. The soft actor-critic, or

SAC, uses the Q-value function to derive progressively better policies. The Q-value function

as described in Equation 1 represents how big the expected accumulated reward, over period

of time, from a certain state of the environment s, is if we take a certain action a and if we

act according to a policy π.

Qπ(s, a) = E
τ∼π

[R(τ) | s0 = s, a0 = a] [4] (1)

The τ describes the series of actions that follow from policy π, called trajectory, and the R

function describes all the reward that we receive if trajectory τ is executed. The SAC uses two

separate neural networks that compute the soft Q-value function. Two neural networks are

used to increase stability, since only one neural network tends to over- or underestimate the

real Q-value over time. Having two networks that are used to improve each other stabilizes

this over-/underestimating. These two neural networks essentially improve each other in the

way that the loss, or how wrong the neural networks are, is defined as the squared difference

between their outputs. Neural networks use this loss to then compute what to adjust to

minimize said loss. From these estimated Q-values we can extract policies that maximize our

expected reward when the Q-value networks get better and better. Besides The Q learning,
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the SAC uses entropy maximization. This means that the reward function has a built-in

component that rewards the agent for a policy with high entropy or randomness. High

entropy helps the robot try out more different strategies so it does not accidentally converge

on a local maximum.

3 Experiments

To build and train this quadrupedal robot, we used three libraries. We used OpenAI gym

to construct an environment fit for reinforcement learning. OpenAi Gym is an open source

library and crafted specifically to allow convenient construction and use of such reinforcement

learning environments. To simulate the robot and its environment we used PyBullet. PyBullet

is one of the leading open source simulation frameworks. It is easy to use and already has a

sizeable community. To implement the machine learning part of reinforcement learning, we

used stable-baselines. Stable-baselines offers an open source implementation of many popular

reinforcement learning algorithms, including SAC.

Robots

During this project, we used three different robots. Firstly, we used a robot by our

own design as seen in Figure 1. This robot is optimized for simplicity. All eight joints turn

around an axis of the same orientation as the others. This would make it very difficult for

this robot to keep balance after being pushed or even when trying to maneuver through

hard terrain. This simple design can only work in the idealized simulated environment. The

simplicity of the robot has the advantage that most other quadrupedal robots have all the

same structures or similar ones present. This makes this robot potentially valuable if we want

to make conclusions from the behaviour of this robot to the behaviour of other quadrupedal

robots. The process of designing and coding our own robot had educational purposes too.
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Its eight joints, four hips and four knees, are all revolute joints, meaning they have defined

limits up to where they can turn.

Figure 1: The self-designed robot

Secondly, we used a virtual version of the Laikago robot by Unitree, as seen in Figure

2. One important difference between our own robot design and Laikago is the addition

of another joint on each leg. This joint is located at the hip and its axis of rotation is

perpendicular to those of the other joints which allow for better reaction to forces from

outside. This robot is included in the Pybullet library.
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Figure 2: Laikago by Unitree

Lastly, we used a conventionally programmed robot, provided by my mentor Mr. Yordan

Tsvetkov, as seen in Figure 3. The robot follows a program that calculates the next action

from the current joint positions using a deterministic formula. This robot uses the same

joints as the first one. The big difference being that it has been conventionally programmed

and optimized to walk in earth-like gravity. We also trained this robot using SAC. It served

as a more realistic version of the robot we design ourselves.

Figure 3: A robot used to test conventional approach
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Actions

An action in our case consists of instructions to all joints what to do next. In this paper

we used, PyBullet position control[5]. An action is defined in a list of length four or eight

with the target positions of each joint. Even though we have at least eight joints on every

robot used, it sometimes proves useful to only use 4 different instructions and give two of

the legs the same instructions. A limit for maximum angular velocity of the joint is set in

the environment at 5.23 r
s
.

Observations

The observations are all the details that the robot knows about its environment to decide

which actions it should take next. Because the robots surroundings are constant, a flat

plane, no sensory information about its surroundings are necessary. We decided to observe

the positions of all joints as well as the orientation of the torso around the x- and y-axes

and the angular velocities of the torso around these axes. These observations should give

the robot enough information to perform the task at hand[6]. The orientation and angular

velocity of the torso around the z-axis is unnecessary since it is at least for our purposes not

important whether the robot walks forward or backwards or even at an angle.

Reward

Two different reward functions were studied by us. The first reward function tried, as

seen in Equation 2, to reward stability and velocity in a target direction. The latter is

simply achieved by looking at how much distance was made in the last time step of ∆x. The

coefficient a is there to balance the importance of the velocity compared to the importance

of the stability. Said stability is incentivized by a function that rewards slight tilts of the

torso while punishing big tilts, or positions that are close to falling. The roll describes the

angle of the torso around the x-axis that is part of the observations. The pitch is the angle

7



around the y-axis. We use the absolute values of these angles so that there is no difference

in cases depending on which side the robot is tilted. The subtracted constants provide the

aforementioned reward for balanced, positions.

r = a ·∆x− b · (|roll| − 0.2 + |pitch| − 0.15) (2)

The second reward function used, as shown in equation 3, kept the velocity element of

the first reward function but focused more on efficiency instead of stability. The efficiency is

incentivized by a term that punishes big angular velocities and torques in the joints. In the

formula, this term is shown as the scalar product of the vector with all joint torques and the

vector of all angular velocities. This reward function was proposed for dynamic quadruped

locomotion by Jie Tan et al.[6]. We only used this reward function on Laikago.

r = ∆x− w∆t |τn · qn| (3)

Training and Tests

Models were trained for one million time steps. Training takes place in an environment

with earth-like gravity. The neural networks used to estimate the Q-value function both

consist of two layers of 256 neurons. The neural networks use an activation function called

ReLU. ReLU is a very simple activation function where a neuron is activated or “fires” if the

incoming values exceed a certain threshold. After training, the gait of a robot is observed

and analyzed in four different gravities. We tested the robot in earth-like gravity as a control

group and then look at how its gait changes in the lower gravities of the moon and mars and

also test how it reacts to a higher gravity, which we test in an environment with Jupiter-like

gravity.
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4 Results

Using a conventionally trained robot, the effects of gravity are big. The robot can only

walk in a stable manner in a range between 0.8g and 1.5g± 0.05g. In all tested gravities the

robot fell with the exception of the earth-like gravity it was built to walk in. This is very

well documented by Table 1. This table shows how far the robot could walk in 40 seconds or

until it fell down. Due to the deterministic nature of how the robot acts in every position, we

don’t need to look at multiple tries because the robot will behave the same way every time.

The conventionally trained robot walks with the legs moving in diagonal pairs. This type

of gait is very often seen in the animal world. It is not unlike the trot of a horse, although

much simpler since the legs of horses have an additional ankle joint. The rough progression

is seen in Figure 4. Important to note when comparing the different frame sequences is that

the time passing between the pictures varies between the different robots tested.

Figure 4: The conventionally programmed robot walking in earth-like gravity. Time between
pictures equals approximately 1

3s
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Distance in 40s or until falling in cm Gravitational acceleration in m
s2

]

57.9 24.79 (Jupiter)

1037.4 9.81 (Earth)

47.8 3.71 (Mars)

52.9 1.62 (Moon)

Table 1: The distance walked by the conventionally programmed robot in 40 seconds or until
falling over, compared over different gravity

The conventionally programmed robot failing to adapt well to different gravity does not

come as a big surprise. The sequence of movements is regular and is not dependent on the

orientation of the torso and does not try to adjust this orientation to achieve balance. This

inability to adjust to any changes of the environment indeed can be attributed to the relative

simplicity of the robot and its gait.

When training the robot from Figure 4 using SAC we gave the same instruction to the

diagonal pairs of legs just like in the conventionally trained version. The reward function

used was Equation 2. The gait, as seen in Figure, looks vaguely similar to one produced by

the conventionally trained version although it does not move its body over the legs like the

conventionally programmed robot does. This is likely due to the fact that the reward function

for this robot includes a term for stability, and moving the body over the legs is difficult

to do while staying upright. Similarly to the conventionally programmed version, this robot

failed to walk stably in all tested gravities, as is shown by the example of the robot falling in

martian gravity in Figure 6, except in earth-like gravity where it was trained. Table 2 shows

how the mean reward per episode changes when gravity is changed. This data cannot be

directly compared to the other robots trained using a reward function of the same type as

Equation 2, since the parameters a and b vary. An episode ends after 40 seconds or when the

robot falls down. We average the reward over 10 episodes. This small sample size is sufficient
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because while the robot does act stochastic, meaning somewhat randomly, it does always

behave similarly.

Figure 5: Robot walking trained with SAC and diagonally paired legs in earth-like gravity. Time
between pictures equals approximately 1

10s

Figure 6: Robot trained with SAC and diagonally paired legs falling in martian gravity. Time
between pictures equals approximately 1

10s

Mean reward per episode Gravitational acceleration in m
s2

58.2 24.79 (Jupiter)

10700 9.81 (Earth)

194.8 3.71 (Mars)

907.1 1.62 (Moon)

Table 2: The mean reward per episode by a robot trained using SAC with diagonally paired legs,
compared over different gravity

Using our own design, the biggest challenge was achieving any gait at all. Although, we

have found robots with a stable walk, these walks use non-symmetric leg movements that
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often appear jerky and irregular. In addition, these movements are often that small that the

robot nearly seems to glide over the ground in a fashion not unlike a hedgehog or similar small

quadrupedal animals. Due to the erratic nature of the walking, comparisons between gaits in

different gravities are still difficult. Still, the robot trained using reinforcement learning and

without paired legs seemed less affected by varied gravity and managed to walk in a stable

manner for all tested values. The robot fell sometimes too, in all tested gravities. The mean

reward per episode over the different gravities, seen in Table 3, shows us a very different

picture to what we saw happening to how far the conventionally programmed robot could

walk in forty second, as depicted in Table 1. It is important to know that the reward also

includes a term for stability in this case, so there is no one-to-one correspondence possible,

but the fact that the learned robot is able to generate more reward in lower gravity suggests

at least some adaptability. This type of reward function seems to perform better when gravity

gets really low. We have seen a rise in mean reward per episode when comparing mars- and

moon-like gravity in the robot trained with SAC and paired legs too.

Figure 7: The robot of our own design trained using SAC walking in earth-like gravity.Time
between pictures equals approximately 1

30s
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Mean reward per episode Gravitational acceleration in m
s2

920 24.79 (Jupiter)

3700 9.81 (Earth)

5197 3.71 (Mars)

7025 1.62 (Moon)

Table 3: How much the reward the robot gets on average in the first 40s, or until falling, over the
different gravities

The reasons for our own robot’s failure to walk in a regular fashion could be found in

many places. These include but is not limited to a bad reward function, non-ideal size or

activation function of the neural networks used, or a flawed robot design. The improvement

of the mean reward per episode in lower gravity is most probably an effect of the specific

reward function, but even if we raise gravity, and the reward per episode goes down, this

drop is less significant than the one seen in the conventionally programmed robot, but we

also saw the mean reward per episode drop very far in the robot trained with SAC and

paired legs.

We did not produce enough experiments to produce a stable Laikago walk. Instead we

decided to migrate to the robot provided by Mr. Tsvetkov and do more experiments using

that robot

5 Future Work

In a first step, we have to improve the regularity of the walk of a robot trained using

reinforcement learning in earth-like gravity. If the observed effects persist, one interesting

possibility to mitigate said effects could be to randomize the gravity during the training

phase so that the robot can acclimatize to a range of different gravities. It would also make

sense to test very different learned robots to see if their relative adaptability when gravity
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is varied holds true for a broader spectrum of reinforcement learning algorithms and reward

functions. Another option to explore in the future would be to try changing from position

control to torque control which is the dominant method of robot joint control, right now but

is less intuitively understandable.

6 Conclusion

We have shown in this paper that quadrupedal robots change their behavior and perfor-

mance significantly when subjected to varying gravity. We have also seen how robots that

learned to walk using reinforcement learning. More specifically with the SAC algorithm and

a reward function that prioritizes speed and stability, are able to better adapt to a changing

gravity than conventionally programmed robots, although this effect is greater in a more

erratically acting robot.
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